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Abstract
Although there has been intensive use of insecticides for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) 
management, their effects on population reduction and natural enemies’ performance have not been adequately studied. There-
fore, this study investigated the diversity and activity of natural enemies under insecticide and insecticide-free applications. 
Natural enemies were collected annually from 2016 to 2022 from 348 maize farms throughout the West African nation of 
Togo. The collections included an entomopathogenic nematode, unidentified bacteria from Enterobacteriaceae and Entero-
coccus, unidentified viruses from Ascoviruses and Baculoviruses, and several fungal species. Parasitoids collected included 
hymenopteran and dipteran species that attacked eggs and larvae. The collected predators included species in the following 
families: Anthocoridae, Carabidae, Chrysopidae, Coccinellidae, Forficulidae, Formicidae, Mantidae, and Reduviidae. The 
parasitism rates were from 14.72% in 2018 to 45.38% in 2022 for egg masses and from 1.32% in 2016 to 41.85% in 2021 for 
larvae. The parasitism rates were three to four times higher in unsprayed farms than sprayed farms.

Keywords Microbial natural enemies · Ovomermis sinensis · Telenomus remus · Coccinellidae · Formicidae

Key message

• High use of insecticides against fall armyworm in West 
Africa, and performance of natural enemies.

• The use of insecticides has affected population densities 
and performances of these species.

• This study draws attention to moderate use of insecticides 
to improve natural control of this pest.

Introduction

The equilibrium among populations of living organisms is due 
to the interdependent relationships among plants, herbivores, 
carnivores, parasites, and pathogens that regulate and balance 
the bio-ecosystem (Szwabiński et al. 2010). Unfortunately, this 
balance is constantly challenged by human activities that cause 
routine disruptions (Ruppert et al. 2018). Agricultural produc-
tion is one of the human activities that throw off the biodiver-
sity balance, and increased agricultural pest populations can 
lead to food and economic losses (Zamagni 2012; Sala et al. 
2013). To avoid these losses, various crop protection methods 
have been developed against phytopathogens and crop pests 
from mammals, birds, reptiles, and arthropods (Berny et al. 
2010; Roger et al. 2014). The use of pesticides has been the 
most common method of pest control. Unfortunately, some 
pest species have developed different resistance mechanisms 
to various pesticide families (Anderson et al. 2018; Tay and 
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Gordon 2019), while other species escape and migrate to new 
regions. In the absence of consistent control measures or indig-
enous natural enemies, a successful pest invasion is usually fol-
lowed by rapid population increase and movement, resulting in 
severe crop damage and potentially serious yield and economic 
losses (De Barro et al. 2015; Haile et al. 2021).

A currently known invasive pest is the fall armyworm 
(FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera: 
Noctuidae), an insect that has spread from its native occur-
rence in the neotropical Americas to many parts of the East-
ern Hemisphere. This polyphagous insect has been reported 
on over 350 host plants, including many crops of economic 
importance (Montezano et al. 2018). Unfortunately, since 
2016, it has been detected in sub-Saharan Africa (Goergen 
et al. 2016; Nagoshi et al. 2017, 2018, 2022; Koffi et al. 2020a, 
b), south and east Asia (Nagoshi et al. 2020; Kim et al. 2021), 
and Oceania and Australia (Bourke and Sar 2020). The spread 
of this pest has caused severe economic damage to cereal pro-
duction (mostly maize) and has disrupted global agricultural 
systems and food security (Koffi et al 2020a, b, 2022). To 
reduce food and economic losses, insecticides are mainly used 
by millions of farmers with the support of several govern-
ments (Koffi et al. 2020b, 2021). However, indiscriminate use 
of insecticides not only threatens the human health and envi-
ronmental protection (O’Dowd et al. 2003) but also disrupts 
natural biodiversity interdependencies by killing non-target 
organisms, that includes natural enemies.

Over one hundred species of natural enemies of FAW 
have been reported worldwide (Molina-Ochoa et al. 2003a; 
Murúa et al. 2009; Meagher et al. 2016). In Africa, many 
indigenous entomopathogens, parasitoids, and predators of 
FAW have been reported (Sisay et al. 2018; Agboyi et al. 
2020; Koffi et al. 2020c). However, due to the indiscrimi-
nate application of insecticides in the invaded areas, popula-
tion trends and the potential of natural control from indig-
enous agents are poorly known. In the west African nation 
of Togo, infestation of FAW was three times lower from 
2018 to 2020, compared to the previous two years follow-
ing the invasion (Koffi et al. 2020a, 2022). Thus, the aim of 
this study was to identify and evaluate the spatial distribu-
tion and impact of insecticide applications on indigenous 
entomopathogenic viruses, bacteria, fungi and nematodes, 
parasitoids, and predators established with FAW populations 
during the seven years following the invasion of the pest in 
Togo.

Materials and methods

Sites of collections

Fall armyworm egg masses and larvae were collected dur-
ing the cropping seasons from April to November of seven 

consecutive years (2016–2022). The collections of speci-
mens were initiated at the onset of the FAW invasion in 
Togo. In 2016, selected collection sites covered the area 
from Lomé (6.176 N) to Kara (9.377 N). From 2017 to 
2022, collections covered the entire country from Lomé to 
Dapaong (10.474 N). The collection sites were randomly 
selected during survey trips for maize farm inspections by 
the Entomological Research team from the Ecole Superieure 
d’Agronomie, Université de Lomé (Fig. 1).

Collection and preservation of specimens

Within the selected farms, quadrants were designated at the 
four cardinal points and middle of each farm. Egg masses 
and larvae were collected from 100 plants within the quad-
rants as well the living organisms that were preying on egg 
masses or larvae. The collected egg masses and larvae were 
placed individually in rearing boxes as described by Koffi 
et al. (2020c) and transferred in coolers (Mobicool ME24, 
23 L, 12 V, Hannover, Germany) to the Université de Lomé 
laboratory. Predators were immediately preserved in crystal 
vials containing 70% ethanol (Koffi et al. 2020c). The egg 
masses and larvae completed their life cycle during labo-
ratory rearing (25 ± 5 ℃, 78 ± 15% relative humidity, and 
12:12 photoperiod) to adulthood of non-infected specimens 

Fig. 1  Collection locations with some reference cities, the years of 
collections and numbers of maize farms inspected from 2016 to 2022
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or to the death of individuals with symptoms of entomopath-
ogens or emergence of parasitoids.

Microbial natural enemies

Dead larvae with evidence of bacterial or viral symptoms 
were isolated and preserved in the freezer at 4 ℃. Descrip-
tion keys were used to identify bacteria (Eilenberg et al. 
2015). Dead larvae presenting green-colored microflora ger-
minations were assigned to undetermined entomopathogenic 
bacteria. Two categories of viruses were identified using 
morphology of dead larvae. Stunted larvae with production 
of virus-filled vesicles and milky-white discoloration were 
classified as Ascoviruses (Federici et al. 2008). Larvae with 
whitish-gray discoloration and a swollen body with a rup-
tured integument leading to liquefaction, were assigned to 
the Baculoviruses (Haase et al. 2015; Valicente 2019).

Symptoms of infections from entomopathogenic fungi 
were germination of hyphae from dead larvae, although a 
few samples were morphologically identified by scientists 
at the USDA-ARS in Ithaca, NY, USA. The infected sam-
ples were removed from their rearing boxes and individually 
placed in an empty Petri dish under the same laboratory 
rearing conditions. They were then individually transferred 
to a Petri dish containing potato dextrose agar (PDA) previ-
ously prepared for fungi germinations and isolations. The 
preparations were incubated at laboratory rearing conditions 
for 10–21 days for identification.

Nematodes, parasitoids, and predators

Nematodes and parasitoids that emerged from FAW eggs, 
and larvae were preserved in 70% ethanol in crystal vials. 
Description keys were used to identify the entomopatho-
genic nematodes (Crosskey 1968; Baker and Capinera 1997; 
Firake and Behere 2020).

Identification keys (Braet et al. 2012; Koffi et al. 2020c) 
and characteristics of insects already identified using molec-
ular barcodes from Africa (Agboyi et al. 2020; Durocher-
Granger et al. 2021; Otim et al. 2021) were used to identify 
emerged parasitoids and collected predators (Brindle 1967; 
Waller et al. 1999; Kwadjo et al. 2012; Nicolas et al. 2015; 
Girod and Lassalle 2017).

Calculations and statistical analysis

During the inspections, insecticide application information 
was documented from the farmers to determine the percent-
age of farms with insecticide applications per year (sprayed 
farms). However, calculations did not consider farms where 

the owner was not present to provide information. Specimen 
collections were separated into two periods, (1) intensive 
insecticide applications, where more than 75% of the farms 
made insecticide applications for FAW management (2016 
and 2018) and (2) occasional insecticide applications, where 
less than 25% of the farms made insecticide applications 
(2018–2022).

After specimen identifications, several variables were 
calculated according to the following equations (Koffi et al. 
2020c):

or

where infection rates (Ir) (y), n = number of larvae infected 
by a given entomopathogen species and N = total number of 
collected larvae. For parasitism rates (Pr) (y), n = number of 
egg masses or larvae parasitized by a given parasitoid spe-
cies and N = total number of egg masses or larvae collected. 
For relative abundances (RA) (y), n = number of a given spe-
cies and N = total number of collected species. For percent of 
sprayed farms (y), n = number of sprayed farms and N = total 
inspected farms per year. For index of dispersion (iD) (i), 
t = ratio of the number of farms hosting a given nematode, 
bacterium, virus, fungus, parasitoid or predator species, and 
T = total number of farms inspected for each year

Data were arranged per location and grouped per year. 
The percentage data were arcsine square root transformed 
prior to statistical analysis. All calculations and transforma-
tions were carried out using Excel before being submitted to 
a Shapiro test for normality (GenStat Twelfth Edition Gen-
Stat Procedure Library Release PL20.1). Normal data were 
submitted to one-way analysis of variance at 95% confident 
interval, and the non-normal data to a non-parametric test 
(Kruskal–Wallis) at 5% significance level. Multiple means 
obtained from the ANOVA were subjected to a Tukey test 
for separation, while means comparing the parasitism rates 
between the sprayed and unsprayed farms were subjected to 
a t-test. The assessment of correlation between the numbers 
of collected egg masses and larvae was also calculated using 
GenStat.

Results

Impact of insecticides on the performance 
of natural control

The two years following the invasion of FAW in Togo 
showed higher numbers of egg masses collected per farm 

(1)y =
n

N
∗ 100

(2)i =
t

T



 Journal of Pest Science

1 3

than the next several years. Although there were high num-
bers of egg masses those first two years, none were found to 
be parasitized. However, the low numbers of egg masses col-
lected since 2018 showed parasitism rates increasing from 
14.72% in 2018 to 45.38% in 2022 (Table 1). The same trend 
was shown with larvae as higher numbers were collected per 
farm in 2016 and 2017 than the following years. Correlation 
analysis between collected egg masses and larvae showed 
no relationship (r = 0.0002, P = 0.869). Larval parasitism 

rates were very low in 2016 (1.32%) and 2017 (2.53%) but 
increased to 15.96% in 2018 and 42.23% in 2022 (Table 1).

During the survey, farmers were interviewed regarding 
insecticide applications and depending on the year, between 
52.1 and 74.1% responded. The percentage of sprayed farms 
was very high in 2017 (91.38% of farms inspected) and 
2016 (73.25%), compared with the range of 23.52–11.08% 
obtained between 2018 and 2022, respectively. Higher egg 
and larval parasitism rates were recorded in unsprayed 

Table 1  Numbers and 
parasitism rates of egg masses 
and larvae across years of 
collections

Means (± SE) within the same column followed by the same letter are not statistically different
n total number, P number of parasitized individuals, Pr parasitism rate

Egg mass Larvae

Year Farm n P Per farm Pr (%) n P Per farm Pr (%)

2016 61 103 0 1.67 ± 0.23b 0a 1025 15 17.02 ± 1.36b 1.32 ± 0.36a
2017 37 42 0 1.14 ± 0.41b 0a 692 17 18.53 ± 3.05b 2.53 ± 0.34a
2018 27 13 2 0.46 ± 0.32a 14.72 ± 2.03b 139 23 4.82 ± 1.23a 15.96 ± 1.35b
2019 79 35 9 0.44 ± 0.11a 23.63 ± 1.35b 425 123 5.07 ± 0.31a 28.72 ± 1.82bc
2020 71 29 11 0.42 ± 0.21a 36.28 ± 2.41bc 296 93 4.11 ± 1.51a 31.37 ± 2.35bc
2021 28 9 4 0.31 ± 0.18a 42.76 ± 3.85c 108 46 3.76 ± 1.65a 41.85 ± 3.61c
2022 45 11 5 0.22 ± 0.14a 45.38 ± 1.69c 153 65 3.36 ± 0.86a 42.23 ± 2.54c
df 6, 347 6, 91 6, 347 6, 269
F 4.65 12.26 8.69 6.82
P 0.032  < 0.001 0.009 0.018

Fig. 2  Percent of egg masses and larvae parasitized or infected from 2016 to 2022 in Togo
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farms than sprayed farms every year of the seven-year study 
(Fig. 2).

Entomopathogenic organisms associated 
with FAW

Entomopathogenic agents associated with FAW larvae 
included a nematode, Ovomermis sinensis Chen, Jian, & 
Ren (Nematoda: Mermithidae), unidentified species in the 
bacteria family of Enterobacteriaceae and Enterococcus sp., 
unidentified viruses belonging to Ascoviruses and Baculo-
viruses, and fungal species Isaria sp. (Hypocreales: Clavi-
cipitaceae) and Metarhizium rileyi (Farl.) Kepler, Rehner, 
& Humber (Hypocreales: Cordycipitaceae). The nematode, 
O. sinensis had low infection rates, relative abundance and 
index of dispersion until 2018, compared to the follow-
ing years (Table 2). The infection rate of bacteria species 
belonging to Enterobacteriaceae was not constant during the 
period of collections, but its relative abundances were high 
in 2016 and 2017. The indexes of dispersion were constant 
over the study period. Infection rates of Enterococcus sp. 
increased from 2018 onward, while its relative abundance 
decreased, and its indexes of dispersion remained constant 
during the study (Table 2). Larvae infected by Ascovirus 
were collected from 2018 to 2022, and Baculovirus was col-
lected from 2017 to 2022. However, the two viruses and fun-
gal groups had constant infection rates, relative abundance, 
and indexes of dispersion throughout the study (Table 2). 
Although the spatial distribution of entomopathogens 
increased during the study (Fig. 3), the population densities 
of each species were similar.

Parasitoids

During this study, 10 species of parasitoids were collected 
and identified. The egg parasitoid Telenomus remus Nixon 
(Hymenoptera: Platygastridae) was consistently collected 
from 2018, with increasing parasitism rates from 15.38 to 
45.44% in 2022. This species index of dispersion was higher 
during the last two years of the collection period (Table 3). 
One species of egg-larval parasitoid, Chelonus bifoveola-
tus (Szépligeti) (Hymenoptera: Braconidae), was also col-
lected with low parasitism rates that increased from 0.39% 
in 2016 to 3.70% in 2021. This species had an increasing 
index of dispersion and decreasing relative abundance dur-
ing the study (Table 3). The larval parasitoids included two 
unidentified species of Tachinidae, five hymenopteran spe-
cies including Coccygidium luteum (Brullé), Cotesia icipe 
(Fernandez-Triana and Fiaboe), an unidentified Braconidae, 
and two unidentified Ichneumonidae, and the larval-pupal 
parasitoid species Meteoridea testacea (Granger) (Braconi-
dae). The indexes of dispersion of the tachinid species were 
the same across all years of collection, with small variations 
found among the parasitism rates and relative abundances 
(Table 3). Parasitism rates of all the other larval parasitoids 
increased moderately from 2018 onward, with low varia-
tion in relative abundance and index of dispersion (Table 3). 
Although the spatial distribution of parasitoids increased 
every year (Fig. 4), the population densities of each species 
were similar.

Predators

A total of 16 species of arthropod predators were col-
lected attacking FAW during this study. These were five 
heteropterans, Orius sp. (Anthocoridae), Haematochares 

Fig. 3  Sites of collections of entomopathogenic agents—O. sinensis (yellow), Enterobacteriaceae (dark yellow), Enterococcus spp. (orange), 
Ascoviruses (red), Baculoviruses (purple), Isaria spp. (violet), and M. rileyi (pink) associated to FAW larvae from 2016 to 2022 in Togo
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obscuripennis Stål, Peprius nodulipes (Signoret), Rhynoco-
ris sp., and Zelus sp. (Reduviidae); four beetles, Calleida sp. 
(Carabidae), Cheilomenes sulphurea (Olivier), Coccinella 
sp. and an unidentified coccinellid (Coccinellidae); three 
earwigs, Euborellia sp., Forficula senegalensis Audinet-
Serville, and Forficula sp. (Forficulidae); two ants, Phei-
dole megacephala F. and Polyrhachis sp. (Formicidae); one 
lacewing, Chrysoperla sp. (Chrysopidae); and one mantid, 
Sphodomantis viridis Forsskal (Mantidae).

Except for Orius sp. and Zelus sp., all the heteropteran 
species were collected from 2018 and had similar relative 
abundances and indices of dispersion during the collection 
years (Table 4). The beetle species were collected from 
2017 and had similar relative abundance across the years 
of collection with slightly increasing indices of dispersion 
(Table 4). Except for Euborellia sp., the earwig species 
were collected from the onset of the FAW invasion with 
a slight increase in relative abundances and dispersion in 
the following years (Table 4). Ants collected were social 
Formicidae that increased in their locations found during 
the study. Chrysoperla sp. and Mantis sp. were collected 
in higher numbers during the first years of the FAW inva-
sion in Togo, and their dispersion increased during the study 
(Table 4). Although the spatial distribution of the predators 
expanded during the study (Fig. 5), the population densities 
of each species were similar.

Discussion

Many of these natural enemy species have been documented 
before in several areas of the world, especially the parasi-
toids and predators (Sisay et al. 2018; Koffi et al. 2020c; 
Abang et al. 2021; Dassou et al. 2021; Otim et al. 2021). 
The nematode species, O. sinensis, has been described to 

infest several noctuid species (Li et al. 2003), including S. 
frugiperda (Sun et al. 2020). The bacterium found, Entero-
coccus sp., is a common gut bacterium found in many Lepi-
doptera species and is most likely non-pathogenic (Voirol 
et al. 2018; Kenis et al. 2022). Viruses have been studied 
for many years to be used as microbial insecticides against 
FAW (Molina-Ochoa et al. 2003b; Guo et al. 2020; Hussain 
et al. 2021). Fungi, including Isaria spp. and M. rileyi, have 
also been studied as biopesticides against noctuid larvae for 
many years (Guo et al. 2020).

The invasion of FAW in Africa was successful as 
increased population growth and rapid spread were followed 
by severe damage to maize plants and important yield and 
economic losses (Koffi 2020a, b, 2022). The response of 
maize producers and governments to threatened food secu-
rity was the application of insecticides (Koffi et al. 2021). 
In Togo, up to 73.25% of maize farms were sprayed with 
insecticides to reduce heavy infestations of FAW. This 
increased up to 91.38% in 2017 and was expected to sta-
bilize or to increase in 2018 (Ramírez-Cabral et al 2020). 
Surprisingly, insecticide applications decreased to 23.52% in 
2018 and reached 11.08% in 2022. The decrease in insecti-
cide applications coincided with the increasing numbers and 
activity of natural control agents which were already being 
collected during maize production in 2016 and 2017. Fortu-
nately, the infestations of FAW between 2018 and 2020 were 
three times lower than the previous two years (Koffi et al. 
2020a, 2022), which may explain why growers reduced their 
sprays. This unexpected phenomenon calls into question the 
efficiency of many insecticides applied against the FAW in 
Togo. The activity of natural control may be underestimated 
or other abiotic factors (i.e., rainfall) may be involved in 
reducing FAW infestation.

Even if natural enemy populations were expected to 
be low and inefficient during the two years following the 

Fig. 4  Sites of collections of parasitoids—T. remus (yellow), C. bifoveolatus, (dark yellow), C. luteum (orange), C. icipe (red), M. testacea, (pur-
ple), braconid (violet), ichneumonid (pink), and tachinids (blue) associated to FAW egg masses and larvae from 2016 to 2022 in Togo
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invasion of the new pest, the three to four times higher para-
sitism rates of egg masses and larvae in the unsprayed than 
sprayed farms demonstrated the negative effects of insec-
ticides on these natural enemy populations. Therefore in 
Togo, the reduction in the number of insecticide applica-
tions since 2018 most likely contributes to the emergence of 
higher populations of pathogens, parasitoids, and predators 
and improvement in their performance.
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